Adaptive Metric Learning Vector Quantization for Ordinal Classification

نویسندگان

  • Shereen Fouad
  • Peter Tiño
چکیده

Many pattern analysis problems require classification of examples into naturally ordered classes. In such cases, nominal classification schemes will ignore the class order relationships, which can have a detrimental effect on classification accuracy. This article introduces two novel ordinal learning vector quantization (LVQ) schemes, with metric learning, specifically designed for classifying data items into ordered classes. In ordinal LVQ, unlike in nominal LVQ, the class order information is used during training in selecting the class prototypes to be adapted, as well as in determining the exact manner in which the prototypes get updated. Prototype-based models in general are more amenable to interpretations and can often be constructed at a smaller computational cost than alternative nonlinear classification models. Experiments demonstrate that the proposed ordinal LVQ formulations compare favorably with their nominal counterparts. Moreover, our methods achieve competitive performance against existing benchmark ordinal regression models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metric learning for incorporating privileged information in prototype-based models

Prototype-based classification models, and particularly Learning Vector Quantization (LVQ) frameworks with adaptive metrics, are powerful supervised classification techniques with good generalization behaviour. This thesis proposes three advanced learning methodologies, in the context of LVQ, aiming at better classification performance under various classification settings. The first contributi...

متن کامل

Adaptive Relevance Matrices in Learning Vector Quantization

We propose a new matrix learning scheme to extend relevance learning vector quantization (RLVQ), an efficient prototype-based classification algorithm, toward a general adaptive metric. By introducing a full matrix of relevance factors in the distance measure, correlations between different features and their importance for the classification scheme can be taken into account and automated, and ...

متن کامل

Comparison of relevance learning vector quantization with other metric adaptive classification methods

The paper deals with the concept of relevance learning in learning vector quantization and classification. Recent machine learning approaches with the ability of metric adaptation but based on different concepts are considered in comparison to variants of relevance learning vector quantization. We compare these methods with respect to their theoretical motivation and we demonstrate the differen...

متن کامل

Ordinal regression based on learning vector quantization

Recently, ordinal regression, which predicts categories of ordinal scale, has received considerable attention. In this paper, we propose a new approach to solve ordinal regression problems within the learning vector quantization framework. It extends the previous approach termed ordinal generalized matrix learning vector quantization with a more suitable and natural cost function, leading to mo...

متن کامل

The Time Adaptive Self Organizing Map for Distribution Estimation

The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 24 11  شماره 

صفحات  -

تاریخ انتشار 2012